Managing Fluid Balance in the Critically Ill Patient
Overview

• Importance of optimizing patient fluid balance
• Fluid overload in critical illness
• Renal replacement therapy for fluid management
• Impact of fluid removal rate on hemodynamics
• Monitoring patient fluid status during treatment
• Advantages of continuous renal replacement therapy
• Guideline recommendations for hemodynamically unstable patients
• Managing fluid overload: Septic shock
• Managing fluid overload: Acute decompensated heart failure
• PRISMAFLEX CRRT system
• Summary and conclusions
• References
Optimizing Patient Fluid Balance
Optimum Fluid Balance Is Central To Critical Care

Fluid Management in Critical Illness Is Challenging

Critical illness characteristics can make optimizing fluid balance difficult

- Hemodynamic compromise
- Leaky capillary beds
- Multi-organ failure
- Large volumes of IV fluids

Fluid Overload in Critical Illness
Causes of Fluid Overload in the ICU

IV fluids
• Fluid resuscitation and continuous intravenous administration of fluid can lead to fluid accumulation and overload

Acute kidney injury
• ICU populations are at increased risk for acute kidney failure (AKI) and oliguria, which often lead to fluid accumulation

Sepsis
• Risk of fluid overload is increased with systemic inflammation, reduced oncotic pressure, and increased capillary permeability

Congestive heart failure
• Congestion, or fluid overload, is a classic clinical feature of patients presenting with heart failure

Clinical Indicators of Fluid Overload

- 10% or greater increase in body weight\(^1,2\)
- Pitting edema, anasarca\(^1,2\)
- Lung crackles, rales\(^1,2\)
- Chest x-ray\(^2\)
 - Congestion
 - Pulmonary edema
 - Pleural effusions

Fluid Overload Is Extremely Common in the ICU

ICU patients with severe sepsis or septic shock (N = 405)

- Day 1: 67% evidenced fluid overload
- Day 3: 48% evidenced fluid overload

Fluid Overload Is Associated with Poor Outcomes

- Increased mortality¹
- Pulmonary edema¹,²
- Myocardial dysfunction²
- Impaired coagulation²
- Delayed wound healing²
- Acute kidney injury²
- Impaired bowel function²
- Reduced liver function²
- Prolonged mechanical ventilation³

Image source: O’Connor & Prowle et al. 2015

USMP/MG120/19-0021 08/19
Managing Fluid Balance with Renal Replacement Therapy

- Renal replacement therapy (RRT) may be utilized for volume management in critically ill patients with fluid overload.\(^1\)

- Large volumes of fluid required to treat underlying condition can result in fluid accumulation that is often difficult to correct in the absence of renal support.\(^2\)

- Effectiveness of medical management alone can be limited by diuretic-resistance and acute kidney injury.\(^3\)

Choice of Appropriate RRT Modality

Considerations1-3

- Total amount of fluid required to be removed to achieve clinical goals
- Rate at which fluids need to be removed
- Ongoing fluid administration needs
- Patient’s illness and comorbidities
- Patient’s hemodynamic status
- Need for solute removal, electrolyte correction or control of uremia
- Available resources and expertise

Plasma Refilling Rate and Hemodynamic Stability

- During RRT, fluid is primarily removed from the intravascular compartment\(^1\)
- The rate of change in intravascular blood volume is determined by plasma refilling rates from the interstitial compartment\(^1\)
- When the rate of fluid removal exceeds that of plasma refilling, the decrease in circulating blood volume can lead to hemodynamic instability, hypotension and hypoperfusion\(^1\)
- A slow, sustained rate of fluid removal allows time for vascular refilling and promotes hemodynamic stability\(^1,2\)

Optimal Fluid Removal Rate

- Safe rate of fluid removal varies by patient condition and may change over the course of treatment
- The rate at which fluid should be removed requires consideration of
 - Expected fluid inputs and losses
 - Expected speed of vascular refilling
 - Patient’s physiological tolerance to transient reduction in intravascular volume
- Slow, sustained fluid removal is more likely to achieve net negative fluid balance with greater hemodynamic stability

Rapid early fluid removal may be indicated in cardio-renal syndrome but a slower removal may be required for hemodynamic tolerability after resolution of pulmonary edema (A)\(^1\)

Patients with single organ renal failure (B) may tolerate more rapid fluid removal than those with AKI complicating severe sepsis (C) or septic shock (D)\(^1\)

Monitoring Patient Fluid Status

• Meticulous monitoring of patient fluid status is critical for effective fluid removal\(^1\)

• Fluid losses or gains outside the control of RRT treatment system must be accounted for\(^2\)
 – IV fluids, nutrition, medications, blood products
 – Urine output, drain outputs

• Patient fluid status is monitored by\(^2\)
 – Accurate charting of all fluid intakes and outputs
 – Daily weighing
 – Physical assessment

Continuous Renal Replacement Therapy for Fluid Management
Advantages of CRRT for Fluid Management

- **Hemodynamic stability**
 - Slow, gradual fluid removal allows adequate time for the vascular space to refill, reducing the impact on hemodynamics and organ perfusion

- **Precise fluid balance control**
 - Accurate measurements of fluid removal and infusion volumes help facilitate precise control of patient fluid balance

- **Flexibility to tailor treatment to clinical needs**
 - Continuous and gradual process allows fluid removal rates to be customized to varied clinical scenarios and fine-tuned on an ongoing basis

Guidelines: CRRT for Hemodynamic Stability

<table>
<thead>
<tr>
<th>Acute Dialysis Quality Initiative (ADQI)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Continuous types of RRT are recommended in situations where shifts in fluid balance and metabolic fluctuations are poorly tolerated.”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kidney Disease</th>
<th>Improving Global Outcomes (KDIGO)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>“We suggest using CRRT, rather than standard intermittent RRT, for hemodynamically unstable patients.”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surviving Sepsis Campaign (SSC)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>“We suggest using CRRT to facilitate management of fluid balance in hemodynamically unstable septic patients.”</td>
<td></td>
</tr>
</tbody>
</table>

Fluid Overload: Septic Shock
Fluid Overload in Septic Shock

Causes of fluid overload

- Initial fluid resuscitation aimed at restoring intravascular volume
- Administration of large volumes of fluid as drug diluents, artificial nutrition and maintenance fluids
- Further fluid administration to counter relative hypovolemia resulting from capillary leak
- Interstitial edema induces organ dysfunction that contributes to further fluid accumulation

RRT in Septic Shock

- Aggressive fluid removal can cause hemodynamic deterioration, which may result in hypoperfusion and worsening organ failure\(^1\)

- Slow, continuous removal of fluid supports hemodynamic stability\(^1\)

- Sepsis clinical guidelines recommend use of CRRT in hemodynamically unstable patients\(^2\)

Fluid Overload: Acute Decompensated Heart Failure
Volume Overload in Acute Decompensated Heart Failure

- Congestion is the primary reason for hospitalization in patients with acute decompensated heart failure.\(^1\)
- Diuretic resistance is common in advanced heart failure and limits the efficacy of fluid removal by medical management alone.\(^2\)
- Nearly 40% of patients treated with conventional diuretic-based regimens still have congestive symptoms at discharge.\(^1\)
- Incomplete decongestion is associated with increased post-discharge events and hospital readmission.\(^3\)
- 2013 ACCF/AHA guideline for the management of heart failure recommend that RRT be considered in patients with obvious volume overload, diuretic resistance and/or impaired renal function.\(^4\)

RRT in Acute Decompensated Heart Failure

- Multiple trials have demonstrated the detrimental effect of hypotension in ADHF1
- Maintenance of hemodynamic stability is key to avoiding hypotension and worsening renal function1
- Desirable volume status should be achieved without causing a rapid reduction in intravascular volume1
- CRRT results have demonstrated improved hemodynamics and better fluid balance control compared with intermittent RRT2

Prismaflex CRRT System
PRISMAFLEX CRRT System

Highly accurate, scale-based fluid management system

- Fluid removal accuracy is provided through algorithms and self-calibrating fluid scales
- Monitors accumulated fluid balance/imbalance and adjusts accordingly to help reduce risk of patient injury
- Allows for easier dose tracking

Scale-based system enables accurate fluid management

Summary and Conclusions
Summary and Conclusions

- Optimizing fluid balance in the ICU is challenging
- Fluid accumulation and overload are common in critically ill patients
- Fluid overload is associated with increased morbidity and mortality
- Effective fluid management strategies can help mitigate fluid accumulation and improve outcomes
- Diuretic resistance and acute kidney injury may limit the efficacy of medical diuresis
- Renal replacement therapy may be considered to help achieve fluid removal goals
- Hemodynamic stability is essential to preserving organ perfusion and optimizing recovery
- Fluid removal with CRRT is slow and sustained, and has demonstrated hemodynamic tolerance
- CRRT may facilitate precise control over patient fluid balance by enabling accurate, ongoing measures of fluid removal and replacement volumes
- CRRT allows customization of fluid removal rates to varied clinical scenarios and changing patient needs
- Fluid inputs and outputs outside the CRRT system must be accounted for during treatment
- CRRT is the suggested modality for mechanical fluid removal in hemodynamically unstable patients with considerable fluid accumulation

References

Rx Only. For the safe and proper use of the devices mentioned herein, please refer to the appropriate Operator’s Manual.

Baxter and Prismaflex are trademarks of Baxter International Inc.